' LEGIBILlTY NOTICE

A major purpose of the Technl-
cal Information Center is to provide
the -broadest dissemination possi-
ble of information contained in
DOE’s Research and Development
Reports to business, industry, the
academic community, and federal
state and local governments.

Although a small portion of this
report is not reproducible, it is

being made available to expedite
‘the availability of information on the
- research discussed herein.

1

LON' T 619100 TN
LA-UR-87-2187 LA-UR--87-2187

DE87 011735

Los Alamos National Laboratory is Operated by the University of Calfornia for the United States Depariment of Energy under contract W-7405-ENG-36

TirLe: USING THE NEWS WINDOW SYSTEM IN A CRAY ENVIRONMENT

AautHORS): R. L. Phillips
D. W. Forslund

susMiTTED To: Cray User Group, proceedings for Spring 1987 meeting.
1

’

DISCLAIMER

This report was prepared as un nccount of work sponsored by an agency of the United States

Governinent. Neither the United Staies Government nor uny ugencey thercof, nor any of their : o
employees, makes any warrunty, cxpress or implied, or ussumes any legal lisbillty or responsi-
hility for the accuracy, completencss, or usefulness of any iniormation, apparalvs, praduct, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein 1o any specific commercial product, process, or service by trade name, trademark,
manufacturer. or atherwise does not necesarily constitute or imply its endorsement, recom-
mendation, or favoring hy the United States Government or any ugency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States CGiovernment or any ugency thereof.

By acueptance of 1y pricle the pubhshaer recognizes that the U S Government relains g nonexciusiva, royaily-free license to pubhish or raproduce
the pubhished torm of tms conttibyhon or to allow olhers to do 80 for US QGovernment purposes

The | oy alamias National LADOfAlery 1equegtsy 1hat the pubhsher igenbily this atlicle as work parformad under the auspices ot the U S Departmant at Eneigy

MASTER
' t
LOS AISIRNOS Loshlamos National Laborstory

@
DISTRIBUTION OF THIS DOCIMENT 'S UNLIMITED

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

USING THE NeWS WINDOW SYSTEM IN A CRAY ENVIRONMENT

R. L. Phillips
D. W. Forslund

Los Alamos National Laboratory
Los Alamos, NM

INTRODUCTION

The computirg environment at Los Alamos National Laboratory (LANL) can be
characterized as besing widely distributed and massively interconnected. Workstations,
terminals, and mainframes can all communicate with one another with relative ease.
Although large worker machines, such as the eight Crays at LANL, can be accessed
interactively through conventional command line driven interfaces, often applications are
best controlled and analyzed via a graphical user interface. Workstations, such as those
made by Sun Microsystems, Inc. and Apollo Computer Inc., provide the high resolution
displays and mouse-driven graphical input needed for such a user interface, but they lack
the computing power required for many applications at LANL.

What is needed is a distribution of processing, so that the inain computational burden is
borne by a Cray while the interaction tasks are handled by the workstation. NeWS, a
product of Sun Microsysterns, is a distributed, extensible window system that provides for
easy allocation of computing tasks throughout a distributed environment. NeWS differs
from other distributed window systems in that the messages sent between processes are in
the form of PostScript programs. This communication mechanism promotes a high degree
of extensibility and device independence.

NeWS is structured as a single UNIX process, a network server that contains a PostScript
interpreter. Client programs, which exist somewhere out on the network, talk to NeWS$
through byte streams. This paper describes the implementation of such a client interface on
a Cray running the UNICOS ¢, - ating system. With only a modest effort, it is possible to
fit a simple PostScript interface to existing mainframe applications, which allows the user
to graphically interact with the program from a remote workstation. Some typical
applications, which have been structured as NeWS clients, wili be described.

NeWS OVERVIEW

The acronym NeWS, derived from Network-extensible Window System, suggests the
network orientation of this window system. As such, it allows the computing resourccs in
a heterogeneous computing environment to be effectively used. NeWS runs cn a machine
with one or more bitmapped displays. It acts as a window server, managing input and
output on its host machine. Application programs — called clients — send messages that
cause NeWS to render images on the display. The clients may reside anywhere on the
network. Server-based window systems are often called distributed window systems,
because the server and its clients may be distributed over the network. This concept is not
unique to NeWS. It first appeared in Andrew.! a system developed at Carnegie-Mellon,
and X Window.? from MIT. The following diagram depicts this network orientation,
where the NeWS server, running on a workstation, serves remote clients running on other
machines.

supercomputer
workstation running
client process
network

window showing [window
npplgutlon —— show!ng process
running on o running in other
supercomputer -‘r worketation

—

workstation running
window server

One of the key features of NeWS is the use of a programming language for communication
between the server and its clients. Instead of sending messages consisting of commands
and parameters in a fixed format, clients send programs that the server interprets. The
language used by NeWS is PostScript,3 which was originslly developed as a language to
drive printers. In order to be suitable for use in an interactive, workstation—based
environment, Sun has augmented the basic PostScript language with new data types and
operators. Among the most significant of these enhancements are canvases and events.
Whereas a printer deals with but one page at a time, NeWS can write to multiple display

I'J, Mormis et. al., "Andrew: A Distributed Personal Computing Environment," Communications of the
ACM, Vol. 29, No. 3 (March 1986),

2 James Gettys, "Problems Implementing Window Systems in UNIX," USENIX Proceedings, January
1986,

Y Adobe Systems, Inc.. PostScript Language Reference Manual, Addison-Wesley, 1985,

surfaces, or canvases. PostScript processes (clients) draw on canvases using PostScript
graphics primitives. Canvases are cheap and fast to create and NeWs makes liberal use of
them. Anything drawn on the screen uses a canvas, whether it is a transient menu or a
semi-permanent window where an application's data are displayed.

Although a PostScript—equipped printer has ro need > deal with interactive input from a
keyboard or a mouse, a workstation runrning NeWS must be able to deal with these
devices. For this, Sun added the event data type to PostScript. Events are PostScript
objects that can be generated either by PostScript processes or by external devices such as
the mouse and keyboard. A process can send an event to itself or any other other process.
Events can be directsd to specific processes or canvases by filling in the appropriate field in
the event's data structure. The following diagram shows a possible scenario for
communication paths between the server and various clients and devices in a network
environment.

Cray

g NeWS server ——"

displey

Other enhancements that NeWS brings to PostScript, such as lightweight processes and
objects for describing color, graphics state, current path (shape), and interprocess
communication, while important, are beyond the scope of this paper.?

CLIENT/SERVER COMMUNICATION

‘The programmer can deal with NeWS at various levels but the most common is one where
a bridge is built between a new or existing C languageS application and the PostScript
environment of the server. The programmer does this bv writing a specification file that

4 Sun Microsystems, Inc., NeWS Technical Overview, Part No. 800-1498-05, March, 1987.
5 NeWS is not restricted to programs written in C but that is the only language hinding currently
available,

associates C procedure names with PostScript code that is to be sent to the server when the
C procedure is invoked by a client. This specification file is compiled by a program called
CPS (for "C to PostScript") into a C header file, which is included by the C application.
This situation is depicted in the following diagram.

#include graph.h

ps_oven_PostScript ()

ps;iiﬁéto(x,y):

EsS_close PostScript():;

application program (client)

cps graph.cps > graph.h

cdef ps_moveto(x,y) X y moveto
cdef ps_lineto(x,y) x y lineto

Interface program (PostScript)

This example suggests that an application will draw lines in a window on the workstation
display by invoking a procedure called ps_lineto with arguments x and y. Any name
could have been chosen as long as it is unique. Prior to calling that procedure, however,
the application must invoke a standard library routine supplied with NeWS, which opens a
path between the client (application) and the server, ps_open_PostScript. When finished,
the application closes that path by culling ps_close_PostScript.

Next, meaning is given to the user-defined procedure by specifying the relationship
between the procedure and corresponding PostScript commands. This step is indicated in
the second part of the diagram. The directive cdef specifies that the C procedure name that
fol'ows, when invoked, is to send the ensuing PostScript commands to the NeWS server.

Here, ps_lineto(x,y) is equivalent to the PostScript statement x y lineto. This is a trivial
exampleS but it does demonstrate the ease with which the C and PostScript worlds can be
bridged. NeWS provides many other tools to facilitate communication between an
application and the server. Some of these will be described in the section Enhancing an
Application: A Case Study.

PORTING NeWS TO A CRAY

Earlier it was mentioned that NeWS is a network—oriented window system and that clients
and servers can exist anywhere in the network. A situation that is especially useful is one
where a computationally burdensome application (client) is running on a supercomputer
and the server, as is usually the case, is running on a Sun workstation.” In this case the
supercomputer is a Cray X-MP/24, which is accessible over a network that uses TCP/IP8
protocols. A segment of the pertinent network topology is shown in the following
diagram.

Local Area Network (LAN), Ethemnet

L
1P
hope router
T cable TV net
LAN (E'hemet)

PY)
CE_ m:fm

6 In fact, most of the common PostScript graphics operations, like moveto and lineto, are predefined.

7 Ports of the NeWS server have been done for Apollo workstations and for some less powerful graphics-
hased personal comriputers as well,

8 This is a standard Defense Advanced Research Projects Agency (DARPA) intemet protocol. The
acronym derives from Transmission Control Protocol/Tinternet Protocol.

The boxes labeled IP router are gateways betwecn different physical networks. The Sun
workstations named ran and hope are the names of the machines used by the authors.
They are some 2 miles distant from one another and both access the Cray located in the
Central Computational Facility through the gateway labeled principal IP router.

Generally, it is a straightforward matter to port the necessary client software to a new
machine if there is a UNIX environment available. Cray provides UNICOS, which is
based on AT&T System V UNIX. The NeWS client software provided by Sun is 4.2 BSD
based, which results in a few minor incompatibilities with UNICOS. Besides the client
application program, one must port the CPS compiler and a related library. This was
accomplished with little effort once a C compiler that supports symbol names longer than
eight characters was provided. A final porting issue arose because, for performance
reasons, NeWS compresses its PostScript data stream tc an encoded form. There were a
few problems encountered in ensuring that these rokens, as they are called, would
propagate unmodified over the network.

Once the port was accomplished, access to the client application of the Cray was gaiued by
opening a terminal window on a workstation running the NeWS server and executing a
remote login to the Cray. Once established, one simply invokes the application and it
establishes contact with the server via the ps_open_PostScript procedure described earlier.
All keyboard and mouse interaction required by the application is handled by the
workstation. All output from the client is displayed on the workstation screen.

ENHANCING AN APPLICATION: A CASE STUDY

NeWS is basically a window server rather than a complete window system. This means
that NeWS does not presume a window or menu management strategy or enforce a
particular style of user interface. To demonstrate the capabilities of NeWS, however, Sun
provides a set of files that implement a sample user interface, a window system, and a
menu package. For ease of use, and to minimize the programmer's requisite knowledge of
PostScript, these utilities have been provided in the style of Sma.ltalk-liks objects.?
Generally, a programmer will find it convenient to nse these tools when adapting a client
application to the NeWS environment. This is disarmingly easy to dv, as is shown in the
following program fragments.

9 Owen M. Densmore, "Object Oriented Programming in NeWS," Third Monterey Graphics Workshop,
USENIX, November, 1986.

/win framebuffer /new DefaultWindow send def
{
/FrameLabel (Hello!) def
/PaintClient {paintme} def
/IconlLabel (TEST) def
/ClientMenu MyMenu def
} win send
100 100 200 300 /reshape win send
/map win send

This is an example of how one creates an instance of a window object. DefaultWindow is
the name of the master window class, i.e., the sample window manager supplied with
NeWS. The identfier /win is arbitrarily chosen and will contain the definition of a
window whose parent is framebuffer, the primary display, and is created by the window
class method called /new. Then four procedures are installed in win which label the
frame (FrameLabel), produce output from the client in the window (PaintC/ient), and
identify the window in the closed, iconic state (/conLabel). The next line specifies that a
specific menu is to be installed for this window, MyMenu, which is defined below.
Finally, the window is sized to appear with its lower left corner at 100,100 units, with a
width of 200 and a height of 300 units. The window is made visible by sending the object
the /map method.

Menu creation is equally straightforward. The following is a typical command for
producing a menn of three items.

/MyMenu

(
(Key 1) (menuprocl}
ey 2) (menuprocl}
(Other =>) OtherMenu

] /new DefaultMenu send def

This statement creates an instance of the master menu class DefaultMenu called MyMenu.
When an item named Key / is selected it causes a procedure named menuprocl to be
invoked. Likewise for the second item. The third item, Other =>, causes a pull-right or
walking menu to appear, OtherMenu, which has a similar set of keys and corresponding
action procedures. MyMenu appears when a specified mouse button is pressed when the
cursor is within the window to which it t slongs — win in this case.

The first sample application to be considered is GNUPLOT, a public domain program
developed at Villanova University.l0 GNUPLOT is a sophisticated interactive data
plotting program comprising several thousand lines of C source code. About 30 lines of
code were added to provide the client/server bridge described earlier. Four C-callable
procedures were defined in terms of about 400 lines of PostScript. Once processed with
CPS, the resulting header file is included and compiled with the slightly modified
GNUPLOT application. The default master window and menu classes were used without
modification. The behavior of GNUPLOT as modified to run under NeWS can best be
described by reference to a sequence of screen dumps, Plates 1 - 4.

Plate 1 shows three VT 100 terminal emulator windows. GNUPLOT has been invoked in
the upper left window and commands to the program will be issued there. A collection of
typical GNUPLOT commands is shown in the lower right window. Finally, a portion of
the PostScript interface program is shown in the lower left window. In particular, the
complete routine for drawing in a window, PainrClient, is shown there. In the upper left
window a command has been issued to GNUPLOT to plot the sine function. The small
window to the right was opened and the data were scaled and plotted there. It is important
to note that the client application (which, rec2ll, resides on a Cray) need only be consulted
when a new data set is requested. Otherwise, all operations are performed locally on the
workstation that hosts the NeWS$ server. The menull appearing at the bottom of \he
plotting window shows that five operations can now be performed. These are all handled
by the PostScript interface; GNUPLOT knows nothing of these capabilites.

- The New Window capability is demonstrated in Plate 2. There, three additional
windows have been interactively opened by the user. Several commands were issued to
GNUPLOT, resulting in the new data sets being plotted in the additional windows. The
Active Window menu item allows the user to steer a new data set to the desired
window,thereby to draw afresh in empty ones or to replace data sets in those windows
currently in use.

Plate 3 demonstrates the Zoom menu item. By invoking it the user has zoomed-in to the
upper left corner of the original sine curve data set (in the window labeled GNUPLOTO),
which reveals the label that was previously illegible. A new menu item, Restore, has also
appeared, which allows restoration of the original scale. After zooming, the user invoked
the Print menu item, which produced a file containing the PostScript representation of the
current window contents ready for printing. The window to the left, labeled psview,
demonstrates the application of a NeWS PostScript previewing facility to that file.

10 GNUPLOT was developed by Thomas Williams and Colin Kelley, Department of Electrical
Engineering, Villanova University, Villanova, PA 19085.
' ClientMenu, 10 use previous terminology.

Finally, Plate 4 shows an application of the Overlay menu item. This is designed to allow
comparison of different data sets. The tangent function originally plotted in the
GNUPLOT1 window was overlaid on the sine¢ function in GNUPLOT(Q. The same
operation was performed in GNUPLOT! and the user zoomed-in on the origin of the
composite data set. When the Print menu item is invoked for an overlaid window, the
composite, possibly Zoomed, data set will be printed.

OTHER CLIENT APPLICATIONS

Two other existing applications have been converted to NeWS clients, using the same
client/server interface techniques described earlier. As was the case with GNUPLOT, only
minimal changes had to be added to the applications to provide access to NeWS$S
capabilities. The first of these applications is SURFMODL,!2 a public domain surface
r.odeling package. Plate 5 shows some images produced by that package. Consistent with
the ccmplexity of the application, its menu is more extensive than that for GNUPLOT.
Note, however, that the first menu Window Edit is, when invoked, the entire
GNUPLOT menu, unchanged. Thus, it was possible to reuse all the functionality that
was developed for another appiication. Plate 6 is a goorl example of the use of the Print
menu command. It depicts a shaded rendition of the image shown in the SURFMODLO
window.

Plate 7 shows shows an application where, again, the menu functions developed for
GNUPLOT were used virtually unchanged. This application is a standard UNIX plot file
filter. Plot files conforming to this format can be previewed, independent of the application
that produced them. In this example a file containing four plots is being previewed. The
data plotted in the window labeled NeWSplot! were extracted from the original window
with the Zoom command. The ability to leverage off previous NeWS developments
should be obvious.

CONCLUDING REMARKS

NeWS has proven to be a flexible and powerful environment for building sophisticated
user interfaces for major applications. Particularly impressive is the ease with which
existing applications can be fitted with an interactive interface, even though issues like
window systems and graphical input were never envisioned in their design. This is
especially important in an organization where many substantial applications already exist
and it is nc* feasible to change them radically in order to accommodate a workstation

12 SURFMODL was developed by Kenneth Van Camp, P. O. Box 784, Stroudsburg, PA 18360.

environmen:. The authors have just begun to explore the potential of NeWS. As
impressive as the results have been so far, it seems the surface has hardly been scratched.

10

w100 rarmunal anasleor

RS gnubigh

oNvPLOT

unix version 1.1.0

last aodified Tau Peb 19 20:34.31 NST 1987

Copyright (C) 1984, 1907 Colin Kelley. Thomas ¥illiwme

1ot> plot sta(x)
F:uh |

—
T ——

\ -

Neow Wndew
Acive Window

Zoem

ol

W00 e marees onisdaner

wi00 tarmene omuigmer

[T ¥

gnudict Begia
RYWing Surrvir. get /thise emeh def
hisV /grutizet get
{
{
/Paintliient
(ClientCanves retoanvas
sclarrey calctranstors
pie pause
over Laye
(eRch POP myWwins exch get /pic get sxec pause) forall
) det
/Pasnticon |
qouve
lconCanvas setcanvas
teonPiliColor fillcanvee lconRordecColet strokecanvas
sclarray
caletransfors pie pase
grestore
) et
} th v eend

thiew /gnufitet false pui

ey oL

T. CONMOC 0cess lp) pe
ant 1p pd.pe

ltans pwd

/ud /¢ Lp/geaaplot

tant cat siagle. deme

<

P gnuplet) set term (term-type)
P gwplet) Load 'single dems’
4

ot samples 30

Lot (=10:10) oLA(R), atan(®), con(atan(x)}

et samplse 100

plos {-pi/8 pi] com(x}), = (SIN(R) > eLn(Rel) ? oin(xX)
pet somplee 200

plet (-] 8] ssin(n), acon(m)

ploat (+30-20) bes)0(x'*0 1201 vith impulses, (x**bes)0(X))-2 $ vith points
ot semples 400

Lot (=10-101 coad(otn(x) *obes)l(x))

plot (-3%p1 . 8%pa) (-5 8| ceak(ran(m) /etan(x)). i/x

00t atoscale

pet samples 000

plot {-30 20) otn(x*20) *atan(x)

plot (=19 19) '1 dat'wvith i1apulses ,'2 dat' , ') dat’ viuh lines

rtane §

BIN(Re1))

S

Plate 1

—t100 tarmanel evailscor- ’
8 gruhigh |
oNgPLOT -
unix version 1.1.0 "
last modified Ti: Poeb 19 20:34:3% MST 1907

Copyrignet (C) 'Je€. 1907 Colin Kelley, Thomas ¥illisme

Wwe» plot an(m s JAR), '/ ;-1 EER|

1ot> plot tan(: L3S

108> eot sam;ler 30) 1
1ot (=10.10] ¥u.0), atan(x).cos (atan(x)) gaplot) 1
wplot> plaf. (=1,:20] bes)0/{x)?0. 12e1 with iapulses, (x**hes3O(X))-2. S vith poi \
e

lot) (It raaplee 200

108 (=3 4/ %aLn(x), acos (x) guplot?
WpLaE) Flot (-30.20] bes1Q(x)*0. 121 with impulses, (X**besj0(x))-2.$ vith po1 J J
o

s § L F= AT

‘o2 ‘M v 177

gnudict begin ~
BYVinS CULIVLIA get /thisv exch def

thisw /gufirst get \
{
{
/Painttliont ,
(CLiencCanvas setcanves > g
sclarray caletrarttorn q
Plo pause | koo M

oveclays p— -
{exch Pop mywins exch get \ b))
} det R o8 samples 100
/Pasntleon (: o8 [=p4/8:p4) 0o (M), = (OLA(R) > sin(Rel) ? SLA(R) Min(%el))
yoave ot samp'ee 300
IconCanvas setcanvas [R Lot (-3 8] uein(x), 8008 (R)
IconfillColos fillcanves Ic L L]] Lo Soeren poane
sclarcay - - —— ot sanples 400
caletransforn pie pause adl ples [-10:10) ceal(otnim)senesyon))
qrestore plot [-8°pt S%p4| (-8 8| real(tan(m)/stan(x)), 1/x
) def ot Mmtesenls
) thisv send ot saaples 000
plot {~30 20) oin(x*20) *atan(m)
thise /gnufirst falee pus Lat (-19.19] ‘'1.dat'wieh impulses . ‘2 dat’ . ') dat’ with lines
]

[W

— —

Plate 2

"] 00 srwanal evwiamer
any grunign] ‘ -
ONUPLOT 3
unix veraton 1.1.0 _PS$Teml |
last modified T>u Feb 19 20:34:31 KST 1967

Copyright (C) 1986, 1987 Colin Kelley. Thomas Villiaag
108> plot sin(R) o SR, . "1 I
Lot> plet tan(x)

L]
Lot (=10 19) stn(x), atan(x).cos (atan(x))gnuplot) Slrl(X)

10¢> plot [-30:20) DesjO(x)*0. 1261 sith impulses. (X¢*besj0(x)) -2 8 vith po1

10T)> set samplee 200
1ot [=3-S| aein(x). scos(x) IWPLOT) A":"‘":"‘::'
10€> plot (=30 20] bes3O(x)*0. 1201 vith impulses. (X**hesj0(x))-2.§ with put ve win

-t | &= T

e v sin(x)
ayvins curcvy
thisy /gnuf
{
! {

/'hu\wj
(Gl
el b

pie
over TEYY sl
(erch pop mywins exoh qet
} deot '
/Paintleon (d
goave r
4

13

b
ot ssmples 100
Lot (-pL/2:pi) con(m), - (BUN(X) > san(Red) P oiA(R) #iR(RsL))
et esaples 200

IconCanvas vetoanves o8 (-3 8] asin(x), seoe(n)

IconPiliColor filloenves Lo .
sclarcay S R
caletranefora pie pwuse j’
grestate

) det

) thisw send

o8 senpled 4
Lot (<10 10) ceel(oin(R) **DesjO(n))

Lot (-8%p1 $°pi] (-3 ¥] real(tan(x)/atan(x)), 1/x

o4 sutsseale

2t semples 000

Lot (=30 20| ein(m*R0) *acan(®)

Lot i-u 19] 'L dat'with tmpulses . ‘2 dat’ , '3 dat’ with lines
any

thisw /gnufizee false put

[S

Plate 3

S= 100 termanl ovasdaser-]
e grubign

omgpPLOT

unix version 1.1.0

last aodified Thu Pab 18 20:34)1 NST 1907

Copyrignt (C) 1986, 1907 Colin Relley, Thomas Villiams

lat) plot sin(x)

e plot tan(m)
lot> set seaples 30

]
Lot [-10:10] 91A(X), atan(x), cos (atan(x)) guplots \7

lot) plet (-30:20) des30(x)*0.12¢1 vith .mpulses. (x**bes30(X))-2.§ with poi
te

Lot> set samples 200
Lot {-3:S] asin(x). acee(X)grplot)

Lat) plot (-20.20) Des30(x)*0.12e% with impulses, (x**besjO(R))-1 § wvith poi

B

(1]
lat) set samplee 600
10t [-30.20] o1n(x*20) *atan (X) gruplat> U
Llot> plet (~19.19] ‘i dat’'with ispulses .'2 dat’ ,') dat’ with iines 1
Lot i
b
\ ‘.,...u'o"u—
—J ¢".
] v)
(i
AYVINS CUZTVIR get /thise exch def b LA
Whise /gutirst get ‘ “l
{ .o «
{ *, : \
Magnttliont «® e ey
{ClientCanvas setcanvas . S V b sresassenett
sclarray calotcaneforn '
pie pause i I g i
ovetlayse — -
{exch pop mywins emsh get lo p alt) %
) det o8 senples 100 w
Maineloen ¢ X Wered el 1ot (<pL/R Pi] coR(R), - (SA(R) > San(Xs1) ? BIA(X) SAA(ReL)) !
qrave dFayai S meell 0% samplae 200 |
IconCanvas seteanvae 1ot (=3 8| sotn(m). neoe (%) !
teonfiliColoc rillcanves Ic . . L 18t (<30 20) DesjO(m)*0 12¢1 with iapulses, (R**Des)0(R))-2 § vith points |
selarray ot saplss 400 |
calotransfora pie pause J 108 (=10.10) real (o1 (%) **bes)0(x)) :
grestore Lo8 [<3%4 $%pi) (-8 5) real(tan(m)/atm(m\), 1/r
) dot " witaseale :
) thiew send o8 samples 000
P thise /utice. fal . 10t (=30 201 sin(R420) *etan(x)
» re. false

Piate 4

DL S

WI00 wrmina evaslair

(thiefile picetsr rsadhemstiing pop) iasge
} et

PL.pe°NPS s0TVIr ratndov not responding still trying
S server catibov ok
943 Lines, 2641420 charaoters

Total

NewWindow |
g¢ Peunaas

J | ~/pin/pesun

—201420 ‘wy

weforaing to 2-p
octing sucfaces.

Reye, Yoy, Saye, 10
moforaing te i-D
e NV fLLls name
sneforaing to 1-D
ter nev file name

Xeys, Yoye, Soye,

lan® (sloep
2] e
1] Done
> plpy)
lang 11
sleep 20
3) Mot
1) Done
> plpe)
lane

rans |

tol | </pin/pesun

Plate

5

Plate 6

L2k 377

wi00 swrminel orleser

/xDew 1 0 devit pop uef
/YOuw 0 1 devit ench pop def
/thisfils ocurrentsfils def

u u
/dort :""]"'T]TI: :Tlll'llllll‘[:
{/picety chitWidth 7 add § 1div string def C 3 C 3
&Widinoh inch dyNitInch inch soale i Tpela wp- DRt
{1.0 sxch sub) settranefer - . 3 - 1
chitVidth cdithHt chitDepth {cbit¥idth O O chitht neg 0 cbitht) - [o = 1! o A
(Ehlarsle plosts renduamatring pop) Laaqe i“;_" TELLE i ";xt ::.u‘o' A
) - 3 X]
/entewiom 1158 dof 4 .,,;_“ E L I i'" kR
apatlit 900 def K : o 3
Keanu 1 ot o= Eo e Fe w3 —
D.§ ineh £.5 inek translate . ke oram wfy sum T
jOev € mul yOev 3 mul scale p L 3 E ;
/anVidInch 16 dot 14 "'A_llLLllllll :'Llllljllllll‘
VayeInen 12.3 dof q s YR s . u -
113 t
g
{ oun
‘1. pe° M6 TolPplec]
(=_lrlrrll!ll!
y :]
3 3
LT [T 7 3 bt W s
3 L
3 ! o
9.08 Upper Laft < E iu;'-.. l:..o'o. [-:'
{ 3 L o 3
1. K { - "'E“o -:': wn
““0.“ 11 nX 0'=" !...’ 3 < - p
3 o’ P: - afy onam \
L] - e
(3 p)
® 004 -, v111|l||1|l1 llllllllllli:
. X ['=0.008 . u'. “») M a“]
o.0m er000 - - i
' N I l L1 1 l lj J
(] (X (1] ptatusdict /asuslleed old_nanualleed put
|
.
r L
Wplav @ aw. b inputl. plet e
arw. vps irgut. plot £1t plet S
4 Mplot ¢ input ples q
rans |

Plate 7

